Square Functions for Ritt Operators on Noncommutative $L^p$-Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUNCTIONAL CALCULUS AND SQUARE FUNCTIONS ON NONCOMMUTATIVE L p - SPACES

In this work we investigate semigroups of operators acting on noncommutative L-spaces. We introduce noncommutative square functions and their connection to sectoriality, variants of Rademacher sectoriality, and H∞ functional calculus. We discuss several examples of noncommutative diffusion semigroups. This includes Schur multipliers, q-Ornstein-Uhlenbeck semigroups, and the noncommutative Poiss...

متن کامل

Noncommutative Lp spaces, Operator spaces and Applications

Overview of the field. NoncommutativeLp-spaces are at the heart of this conference. These spaces have a long history going back to pioneering works by von Neumann, Dixmier and Segal. They are the analogues of the classical Lebesgue spaces of pintegrable functions, where now functions are replaced by operators. These spaces have been investigated for operator algebras with a trace, and then arou...

متن کامل

Norms of Positive Operators on LP-Spaces

Let 0 < T: LP(Y, v) -+ Lq(X, ) be a positive linear operator and let HITIP ,q denote its operator norm. In this paper a method is given to compute 1Tllp, q exactly or to bound 11Tllp q from above. As an application the exact norm 11VIlp,q of the Volterra operator Vf(x) = fo f(t)dt is computed.

متن کامل

Complex interpolation of weighted noncommutative Lp-spaces

Let M be a semifinite von Neumann algebra equipped with a semifinite normal faithful trace τ . Let d be an injective positive measurable operator with respect to (M, τ ) such that d is also measurable. Define Lp(d) = {x ∈ L0(M) : dx+ xd ∈ Lp(M)} and ‖x‖Lp(d) = ‖dx+ xd‖p . We show that for 1 6 p0 < p1 6 ∞, 0 < θ < 1 and α0 > 0, α1 > 0 the interpolation equality (Lp0(d 0), Lp1(d α))θ = Lp(d ) hol...

متن کامل

FINITE DIMENSIONAL SUBSPACES OF NONCOMMUTATIVE Lp Spaces

We prove the following noncommutative version of Lewis’s classical result. Every n-dimensional subspace E of Lp(M) (1 < p < ∞) for a von Neumann algebra M satisfies dcb(E,RC n p ) ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ for some constant cp depending only on p, where 1 p + 1 p = 1 and RC p = [Rn∩ Cn, Rn +Cn] 1 p . Moreover, there is a projection P : Lp(M) → Lp(M) onto E with ‖P‖cb ≤ cp · n ̨̨ ̨ 1 2 − 1 p ̨̨ ̨ . We fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 2013

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-15573